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Abstract. An exact formula for the expansion of an outgoing spherical electron wave around 
another centre is presented from which new approximations for spherical-wave scattering 
are derived. These expressions allow a considerably higher accuracy in high-speed numerical 
multiple-scattering calculations than methods existing hitherto. This is demonstrated for 
tungsten in the energy range from 50 to 5000 eV. The improvements of the given formulae 
over earlier approaches are greater the higher the energy. In particular the errors in the 
forward scattering direction are very small. 

1. Introduction 

Elastic scattering processes of electrons can be used to probe the geometrical structure 
of solids, provided that the wavelength of the electrons is of the same order of magnitude 
as the interatomic distances. In addition to the well established electron diffraction 
techniques LEED, MEED and RHEED structure investigation methods are now also applied, 
which make use of electrons created by excitation processes inside the sample (EXAFS, 
XANES, photoelectron diffraction, Auger electron diffraction, etc). In the latter four 
spectroscopies the final state is essentially formed by multiple-scattering processes of 
the excited electrons at the atoms in the surroundings of the emitter. 

In order to obtain the structural data from the energy-dependent or angle-dependent 
modulations in the measured quantities (x-ray absorption coefficient, photoelectron 
intensity, etc) one has to study the scattering effects of spherical electron waves in a 
rather large cluster of atoms, the size of which is mainly determined by the inelastic 
mean free path of the excited electrons. For electrons with kinetic energies above 50 eV 
exact calculations within the framework of the partial-wave expansion are prohibitively 
expensive due to the large number of scattering phase shifts which must be included in 
the expansion. Therefore the analysis of experimental data was often carried out on the 
basis of a plane-wave approximation (PWA). However, it is now generally acknowledged 
that in many systems spherical-wave effects play an important role and that the accuracy 
of the commonly applied PWA is not sufficient for profound investigations and reliable 
conclusions. Several attempts have been made in order to develop more sophisticated 
approximations which on the one hand guarantee adequate accuracy of the theoretical 
description and which on the other hand are numerically much faster than a full partial- 
wave expansion [l-71. The aim of the present paper is to continue this work. 
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Figure 1. Arrangement of emitter, scattering 
potential and observer. 

In $ 2  we set up a formula for the coefficients which describe the expansion of 
an outgoing spherical electron wave around a new centre. From this expression we 
straightforwardly derive in § 3 very effective approximations for numerical multiple- 
scattering calculations, which may be considered as a generalisation of the reduced 
angular momentum expansion (RAME) [4,6,7]. The quality of the approximations can 
be systematically increased by including higher order terms in the asymptotic formula 
applied for the spherical Hankel functions. In § 4 the accuracy of the given approxi- 
mations is discussed and compared to that of earlier methods on the basis of errer 
parameters defined in [7]. 

2. Scattering of spherical waves 

The key quantities for a quantum mechanical description of spherical-wave scattering 
are the coefficients which describe the expansion of a given spherical wave around a new 
centre (figure 1). The general expression for a spherical wave emitted from an atom R 1  
is given by a linear combination of outgoing partial waves with arbitrary coefficients 
CL1: 

where h,(x)  are spherical Hankel functions, k is the wavenumber,*and L is an abbrevi- 
ation for L = (1, m).  This wavefunction can be expanded into a series of partial waves 
with another centre R2 by means of 

which holds for 1 r - R ,  I < R2,  = ( R 2  - R 1  1 .  Assuming that R2 is the centre of a spherical 
scattering potential we obtain for the scattered wave (see, e.g., [4]) 

v'(4 = 2 hl*(klr - R21)YL2k - R 2 K 2  GL2L1(R21)CL1 ( 3 )  
L2 L1 

with 

T,  = i sin 6) exp(i6/) (4) 
where the 6l are the scattering phase shifts of the potential. 
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The coefficients G,,,(R), which describe the free electron propagator in a two-centre 
angular momentum expansion, are given by 

For high angular momenta I' and 1 a numerical calculation of these coefficients along the 
lines given by ( 5 )  is very involved and time consuming. Therefore it is well worth looking 
for a proper expression for the GL,,(R) which is computationally faster than ( 5 ) .  

Our starting point is the following integral representation for the GL,,(R): 

where E% 0 and Y is an auxiliary quantity which has to fulfil the condition 0 < r < R. 
Equation (6) can be proved by expanding the plane wave into an angular momentum 
series 

The remaining integral over dK can be calculated by closing the contour in the complex 
K plane (for hj!)(KR) = h,.(KR) in the upper half-plane and for hj2)(KR) in the lower 
half-plane) and using Cauchy's residue theorem 

For vectors R which lie on the positive z axis it can be shown that the expansion 
coefficients GL,L(R) vanish form' # m. Following [4] we denote these special coefficients 
by 

The coefficients G,,,(R) corresponding to an arbitrary position of R can be expressed 
by the grlm(R) using rotations of the coordinate system (see the appendix). 

From (6) it follows that 

where the integral over d <  can be calculated straightforwardly. After that the integral 
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over dK is solved by closing the contour in the complex K-plane and applying Cauchy's 
residue theorem: 

2n + Im/ eikR 1 
i k R F n ! ( n  + ,mi)! (L) 2kR 

dF(kR) d;+iml(kR) 

where dp(x)  is an abbreviation for 

(1 + s)! (L) - n ,  d r ( x )  = 7 (1 - s)!(s - n)! 2x 

The polynomials dj'(x) are closely related to the polynomial parts of the spherical Hankel 
functions 

and can be expressed by derivatives of the d,(x) 

3. Approximations 

Now the obtained exact expressions (11) and (14) can be essentially simplified by 
applying appropriate approximations to the polynomial part of the spherical Hankel 
functions. The upper limit of the angular momenta which must be included in the partial 
wave expansion is determined by the behaviour of the scattering phase shifts. It can be 
roughly estimated from the radius of the scattering potential to be 

Therefore in the case of nearest neighbours the approximation used for the spherical 
Hankel functions h,(x) must be valid for 1 S x/2. An effective formula which fulfils this 
condition is [8] 

d , ( x )  = exp [iL(L + 1)/2x]. (16) 

At the highest angular momenta included in the partial-wave expansion the argument 
in this phase factor can be considerably larger than 1 for touching scGt'tering potentials. 
Therefore an approximation d,(x) = 1, which is used in the PWA, is doubtful. All further 
corrections to the modulus and the phase of (16) are at least of second order in the small 
parameter l/x [8]. 
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Inserting (16) into (14) and (11) gives 

gr l  m ( R )  i~‘-~-Iml .\/ (21’ + 1)(21+ 1) (eikR/ikR) 

x dp (kR)d,(kR)Jl,,(~l’(Z’ + l ) l ( l +  l ) / k R )  

where 

are the Bessel functions. Due to the last term Jlml(z) in (17) the absolute values of the 
expansion coefficients glflm(R) strongly decrease for z s 1 as the absolute value of the 
magnetic quantum number increases. This behaviour makes it possible to neglect the 
coefficients gl,lm(R) with higher I m 1 in multiple-scattering calculations, which lessens 
the numerical effort for the calculation of the rotation matrices considerably (see the 
appendix). 

The accuracy of the presented approximation for the grlm(R) can be further increased 
by taking into account terms of higher order in the description of the spherical Hankel 
function. Using, for instance 

d,(x) % VI + 1(1+ 1)/2x2 exp{i[l(l + 1)/2x][1 + Z(L + 1)/12x2]} (19) 

we obtain 

gltlm(R) = il‘-,-lm1d(2~‘ + 1)(2l+ 1) (eikR/ikR)dlJ ( k ~ ) d , ( k ~ )  

x {[I -i- (i/2kR)(z2/2- /mI2 - Iml)IJlml(z) + (iz/2kR)Jlm1+1(z)> (20) 

z = ( l /kR)Vl’( t  + 1)l( l+ 1 ) V l  + l’(l’ + 1)/(2kR)W1 + l ( l +  1)/(2kR)2. 

with 

Starting from (17) various previously published results can be recovered and classi- 
fied. In the reduced angular-momentum expansion (RAME) [4,6,7], which includes only 
contributions from the coefficients glr,(R) with 1 m I S 1, the Bessel function in (17) is 
approximated by the leading terms 

J lml(z> 2.11 - (2/2I2I6m,o + (Z/2)61mi,1* (21) 

Jlml(z> Jo(z)6m,o + (2/2)6lmI,l (22) 

In a slightly better version, called the spherical-wave approximation (SWA) [5] , 

is used. 
Other approaches take into account only the coefficients gl,,(R) with m = 0. The 

most effective of them is the modified small-scattering-centre approximation (MSSCA) 
[4,6,7],  which is obtained from (17) by applying 

J lml(z )  =e 6 m , o *  (23) 

If the resulting expression is further simplified by setting dlt (kR) = 1 and dl(kR) = 1, we 
will arrive at the commonly used PWA. An intermediate version between the MSSCA and 
the PWA is the small-atom approximation [9], in which the exact expression for dl(kR) is 
used, whereas dl , (kR)  is replaced by 1. 
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Another well established formalism for spherical-wave scattering is the Taylor-series 
magnetic-quantum-number expansion [2,3], which is based on the following exact 
expression for the gl, lm(R): 

(1’ + jml)!(I - jml)! elkR 
(1’ - lml)!(1+ Iml)! ikR 

- 

(24) 

gr lm(R)  = il’-[-2mV _______ 

(Z’+t) !  ( i )‘ ( l + s ) !  ( i 1’ ( t + s ) !  
X x x  ( l ’ - t ) ! t !  2kR ( ~ - s ) ! s !  2kR (t+(ml)!(s-lml)! 

For large values of 1 and 1‘ the first terms in this double sum are proportional to 

(25)  

Since the behaviour of the scattering phase shifts ensures only that l / ( k R )  and l ’ / ( k R )  
are small quantities, the first terms in this double sum can considerably increase with s 
and t for the largest values of 1 and 1’ included in the partial-wave expansion. In such a 
case a truncation of the double sum after a few terms can produce errors in the scattered 
wave which are much larger than that of the PWA [6 ,7] .  A similar behaviour is known 
from the polynomial part of the spherical Hankel functions. In (17) such difficulties are 
removed, because the cumbersome terms of (24) are pulled out from the slimmation as 
prefactors d,(kR) and dl(kR).  Then the remaining part, which describes the coupling 
between 1 and l ’ ,  i.e. the coupling between s- and t-sum, is a rapidly convergent sum 
(Bessel function in (17)). 

4. Discussion of accuracy 

In [7] error parameters were introduced in order to obtain a comprehensive assessment 
of the quality of the various approximations for spherical-wave scattering. In these 
parameters the errors are averaged over the emitter-scatterer direction RZ1 and the 
scatterer-observer direction R3* (figure 1): 

where e and e’ are unit vectors. qlex(R21, R 3 2 )  is the exact scattered wave @(Rg) from (3) 
and vll,p(R21, R 3 2 )  is the approximate one. The physical background of the proposed 
averaging procedure in the error parameters is the nature of multiple-scattering pro- 
cesses in a cluster of atoms, where the total wavefunction is given by a superimposition 
of a large number of individual scattering events. The error parameter is normalised in 
such a way that for X =  1 the averaged errors in the scattered wave have the same 
magnitude as the averaged scattered wave itself. 

Of course, the values for Xdepend on the choice of the coefficients CL1 in (l), which 
describe the character of the incident spherical wave q ( r ) .  The most interesting case for 
us is when q ( r )  represents the scattered wave of a preceding scattering process. Then 
the absolute values of the coefficients C L ,  are essentially determined by the scattering 
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properties of atom R1,  i.e. the CL1 are roughly proportional to the T I ,  of atom R1. For 
that reason we define the error parameter for the scattering of a scattered wave X, by 
setting 1 CL1 1 = 1 Tl ,  I in (26) and averaging over all possible phases of the CL1.  Fur- 
thermore we are interested in the case that only one single partial wave is emitted from 
atom R I .  This situation is realised at the atoms where the excitation process takes place. 
The corresponding error parameter X, is defined by setting CL1 = B L 1 , L  in (26). It can 
be shown that X, is independent of m due to the averaging procedure. 

In the energy range considered forward scattering processes can play an important 
role. In many cases they have a significant influence on the structures in the above 
mentioned spectra. Therefore it is useful to investigate the accuracy of the approxi- 
mations considered in this special direction separately. For this purpose we introduce 
an error parameter which includes only forward scattering processes in the numerator. 
In analogy with (26) the errors in the scattered wave are normalised by the intensity of 
the averaged scattered wave. Explicitly, we define 

xf = (4s 1 d n ,  17/’jl,p(R21e, R,ze) - 7/’ex(R21e,R,ze) 1’) 

with I C L 1  1 = 1 T I ,  1 .  From a more detailed inspection of (27) with all rotation matrices, it 
follows that the numerator of Xf depends only on the coefficients gi,Im(R) with m = 0. 

In the following figures the errors of the above described approximations are com- 
pared for tungsten, which has a relatively strong scattering potential due to its large 
atomic number. The exact scattered wave was calculated with the help of 

(-i)‘(2t)! ~ ( l ’ - ~ m ~ ) ~ ! ( l - ~ m ~ ) !  d18+l-,(kR) 
x 2  t!( t-  m)!( t+ m)!  ( I ’  - t ) ! ( l -  t )  ! (2kR)‘ 

obtained from [ 101. Up to 56 scattering phase shifts were included at the highest energies. 
For R21 and R32 the nearest neighbour distance in the tungsten lattice (2.74 A) was 
chosen, i.e., the approximations are tested in the most unfavourable case. As is shown 
in [6] the errors decrease considerably as the distance R,, increases, but a variation of 
R12 has practically no influence on the error parameters. 

In figure 2 the error parameter for the scattering of a scattered wave is plotted in the 
energy range from 50 to 5000 eV on a logarithmic scale. The parameter M determines 
how many coefficients g,t,m(R) are included in the calculation of the approximate scat- 
tered wave. As explained above the modulus of the gl,,,JR) decreases for fixed I ,  l ‘ ,  R 
and E as I m I increases. Therefore we can assume all coefficients g,,,m(R) with 1 m 1 > M 
to be zero. This truncation parameter M determines mainly the numerical effort for the 
calculation of the rotation matrices (see the appendix). Within this framework both the 
PWA and the MSSCA correspond to M = 0, while the RAME corresponds to M = 1. Roughly 
estimated, the numerical work for a full multiple-scattering calculation with the given 
approximations amounts to ( M  + 1)2 times the numerical work of a PWA calculation. 
For pure single-scattering calculations the numerical effort scales as ( M  + 1). 

At first sight it comes out that the accuracy of the approximations does not improve 
as energy increases unlike what is often expected. The higher accuracy of the new 



1420 

10. 

V Fritzsche 

- 

1. 

< 
.1 

.01 

,001 
50 100 500 1000 5000 

E (eV i  

Figure 2. Error parameter for the scattering of a scattered wave (tungsten, nearest neigh- 
bours): -, new approximation (17) using (19) for the d,(x). The parameter M determines 
how many coefficients gi.im(R) are included in the calculation of the approximate scattered 
wave (see text). - - -, RAME;- - - -, MSSCA;------, plane-wave approximation. 

Figure 3. Error parameter for the forward 
scattering of a scattered wave (tungsten, 
nearest neighbours): -, new approxi- 

50 100 500 1000 5000 mation (17) using (19) for the d, (x) ;  other 
curves as defined in figure 2. 

.001 I ’ ’ ’ ” 

E (eV1 

approximation (17) as against previously published methods can be clearly seen. In 
particular, the better quality of the new M = 1 version in comparison to the RAME for 
energies above 300eV should be noted. It should also be mentioned that the error 
parameter X ,  for the SWA, which is an intermediate approach between the RAME and the 
new M = 1 version, lies much closer to that of the RAME than to that of the new M = 1 
approximation. For larger distances between emitter and scattering centre the depicted 
errors decrease as R2;” in the M = 0 version and as R2;” in the M = 1 version. For higher 
values of M this behaviour is even better. 

In figure 3 the error parameter for forward scattering of a scattered wave is shown. 
This comparison shows that forward scattering processes are very well described by 



A new spherical-wave approximation 1421 

1. 

1 

< 
.01 

.OD1 

.0001 

Figure 4. -, error parameter for the 
scattering of a scattered wave and - - - -, 
error parameter for forward scattering of 
a scattered wave calculated with the 

50 100 500 1000 improved version (20) (tungsten, nearest 
neighbours). M is as given in figure 2. 
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the new approximation (17), which is equivalent to the SWA in this special direction. 
Especially for energies above 500 eV the accuracy achieved is better by several orders 
of magnitude than that of the PWA, MSSCA or RAME. By means of (17) the essential 
drawback of earlier approximations-that large errors of a small number of forward 
scattering processes can have a prevailing influence on the calculated spectra-is suc- 
cessfully removed. 

Figure 4 shows the errors for the improved version of our approximation (20). In 
comparison with figures 2 and 3 it can be seen that the errors for M 5 2 and also 
the errors in forward scattering direction are considerably diminished. This figure 
demonstrates convincingly that a very high accuracy can be achieved within the given 
approximation scheme. It should also be mentioned that the errors in the backscattering 
direction are even lower than the ones shown for forward scattering. At 500 eV, for 
instance, the corresponding errors for backscattering are X ,  = 0.0002 with (17) and 
X ,  = 0.000 003 with (20). 

For energies below 50 eV the errors of the approximations presented increase 
slightly, because the description of the d,(x) by the asymptotic expressions (16) or (19) 
becomes poorer. In this energy range, therefore, the exact formula (28) should be used. 
In the same way as above, coefficients grlm(R) with large values 1 m 1 can be neglected in 
the calculation. 

Figure 5 illustrates for an' energy of 500 eV the dependence of the errors on the 
angular momentum of the incident wave. In the PWA all incident partial waves are poorly 
described. The other approximations show a very high accuracy for the lowest angular 
momenta, but the errors increase considerably with 1. The first statement is quite 
favourable for the calculation of photoelectron spectra, Auger electron spectra or EXAFS, 
because the electrons that leave the atom where the excitation process takes place always 
have a low angular momentum. In this way at least the first scattering process of the 
excited electrons is described to good accuracy. Especially for the RAME the increase of 
the errors with lis extremely large. Such an instability can disturb numerical calculations 
considerably. 

5. Conclusions 

In the preceding sections we have presented an exact formula for the coefficientsg,,,,(R) 
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Figure 5 .  Error parameter for the scattering of a 
single partial wave h,(kr)YL(r) as a function of the 
angular momentum 1 (tungsten, nearest neigh- 
bours, E = 500 eV). The curves are drawn as 
guide to the eye: -, new approximation (20). 
M is as given in figure 2 .  Other curves as defined 
in figure 2. 

from which effective expressions for numerical multiple-scattering calculations were 
derived in a transparent manner by applying approximate descriptions to the polynomial 
part of the spherical Hankel functions. In the present paper, d l ( x )  = exp[il(l + 1)/(2x)] 
was used as the simplest approximation, because this phase factor is not negligible for 
the largest angular momenta which must be included in the partial-wave expansion. All 
further corrections to these d, (x)  are terms of second or higher order in the small quantity 

The main contributions to the scattered wave come from the coefficients glti,(R) with 
small absolute values of the magnetic quantum number. Therefore we include in our 
approach only those coefficients with 1 m 1 G M in the calculation of the scattered wave. 
The truncation parameter M essentially determines the numerical effort that is required 
to compute the rotation matrices. From this point of view the parameter M is used to 
optimise the amount of numerical calculation depending on the accuracy required. For 
nearest-neighbour scattering in tungsten the M = 1 version gives reasonable results. 
Only for energies above 1000 eV is the M = 2 version necessary. For larger distances 
the situation is even more favourable and for a great number of large-distance scattering 
processes, which occur in cluster calculations, the M = 0 version is quite sufficient. It 
should be noted that for energies above 300 eV the M = 1 version of the new approxi- 
mation is much better than the previously published RAME, which requires the same 
numerical work. The advantages of the new approximation are most obvious for energies 
above 500 eV. In this sense the results presented here can open a new way to simplify 
MEED calculations along the lines given in [ I l l .  Furthermore it should be stressed that 
the new approximation possess a very high accuracy in the forward-scattering region. 
This is of great importance for the calculation of angle-resolved photoelectron or Auger 
electron spectra. 

A great advantage of the approximation scheme given here is that the accuracy can 
be systematically increased by including higher order terms in the description of the 
spherical Hankel functions [8]. This permits a steady improvement of the quality towards 
the exact partial wave expansion to be achieved. 

For energies below about 50 eV, where the accuracy of the approximations slightly 
decreases, the exact formula (28) for the grlm(R) should be preferred. Also in this case 

l / X .  
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the numerical effort can be diminished by truncating the sum over the magnetic quantum 
numbers as discussed above. 

Appendix 

In order to express the coefficients GLrL(R) for arbitrary vectors R by the gl(lm(R) defined 
in ( 9 )  we transform equation (2) into a rotated coordinate system whose z axis is parallel 
to R. Using the well-known transformation law for spherical harmonics under a rotation 
we obtain 

GL,,(R) = E o$'A(O, -6, -q)grim(R)D$L(q, 6,O) (All  
m 

where 6 and q are the spherical polar coordinates of R in the basis system. In our 
notation the rotation matrices are given by 

Di) ,m(a,  P ,  Y) = e i(m'y + ma) ( I  + m ' ) ! ( l -  m ' ) ! ( l +  m) ! ( l -  m)!  

( - 1) [cos( p/2)]2'- " + m  [sin( p/2)]" - + 2s x c  ( I  - m' - s ) ! ( l +  m -s)!s!(m' - m +s)! 

where a, 

binations of the following type: 

and y are the Eulerian angles. 
The coefficients G,,,(R) in the multiple-scattering theory always appear in com- 

' * ' E GLkL,(Rk,)T,/(R,)G,,,i(R,I) ' ' ' (A31 
L/ 

in which the rotation matrices of neighbouring coefficients GL,L(R) can be combined 
with the result 

(A41 
x ~o( i~mk / f i / j (a j , p j , y j )g l / l j f i j j (R j i )D  (1 1 1 f i j jm t (q j i> ' j i , o ) .  * .  

A/, 

where the Eulerian angles are determined by 

cos pi = sin 6, sin Oji cos(qkj - qj i )  + cos 6, cos tYj; - 
sin ai sin pj = sin 6 k j  sin(qkj - qj i )  

cos ai sin pi = sin 6, cos 6ji cos (qkj  - qji )  - cos 6, sin Oji (A51 
sin y j  sin pi = - sin eji sin(q k j  - qji)  

cos y j  sin pi = - cos 6, sin Oji cos(qkj - q j i )  + sin 6, cos ejj. 
Expression (A4) shows that from the rotation matrices between two coefficients 

g,,(R) only those elements that have low magnetic quantum numbers 1 m 1 S M need to 
be calculated ( M  is the truncation parameter introduced in § 4). 

References 

[l] Daimon H, Ito H, Shin S and Murata Y 1984J. Phys. Soc. Japan 53 3488-97 



1424 V Fritzsche 

[2] Barton J J and Shirley D A 1985 Phys. Reu. A 32 1019-26 
[3] Barton J J and Shirley D A 1985 Phys. Reu. B 32 190&20 
[4] Fritzsche V and Rennert P 1986 Phys. Status Solidi b 135 49-60 
[5] Rehr J J, Albers R C ,  Natoli C Rand Stern E A 1986 Phys. Reu. B 34 4350-3 
[6] Fritzsche V 1988 Phys. Status Solidi b 147 485-94 
[7] Fritzsche V 1989 Surf. Sci. 213 648-56 
[8] Abramowitz M and Stegun I A (ed.) 1964 Handbook of Mathematical Functions (Washington D.C.: 

[9] Lee P A  and Pendry J B 1975 Phys. Reu. B 11 2795-811 
National Bureau of Standards) 

[lo] Nozawa R 1966 J .  Math. Phys. 7 1841-60 
[ l l ]  Barton J J, Xu M-L and Van Hove M A 1988 Phys. Reu. B 37 10 475-86 


